Bias-variance Decomposition

The notation used is as follows:

Symbol Notation
\(\mathcal D\) the dataset
\(x\) the sample
\(y_\mathcal D\) the observation of \(x\) in \(\mathcal D\), affected by noise
\(y\) the real value of \(x\)
\(\bar y\) the mean of the real values
\(f\) the model learned with \(\mathcal D\)
\(f(x)\) the prediction of \(f\) with \(x\)
\(\bar f(x)\) the expectation of prediction of \(f\) with \(x\)
\(l(f(x), y_\mathcal D)\) the loss function, chosen to be squared error

By assuming that the observation errors averages to \(0\), the expectation of the error will be \[ \begin{aligned} E_{x \sim \mathcal D}&[l(f(x), y_\mathcal D)] = E[(f(x) - y_\mathcal D)^2] = E\{[(f(x) - \bar f(x) + (\bar f(x) - y_\mathcal D)]^2\} \\ &= E[(f(x) - \bar f(x))^2] + E[(\bar f(x) - y_\mathcal D)^2] + 2E[(f(x) - \bar f(x))(\bar f(x) - y_\mathcal D)] \\ &= E[(f(x) - \bar f(x))^2] + E\{[(\bar f(x) - y) + (y - y_\mathcal D)]^2\} \\ &\quad + 2\underbrace{E[f(x) - \bar f(x)]}_0 E[\bar f(x) - y_\mathcal D] \\ &= E[(f(x) - \bar f(x))^2] + E[(\bar f(x) - y)^2] + E[(y - y_\mathcal D)^2] + 2E[(\bar f(x) - y)(y - y_\mathcal D)] \\ &= E[(f(x) - \bar f(x))^2] + E[(y - y_\mathcal D)^2] + E\{[(\bar f(x) - \bar y) + (\bar y - y)]^2\} \\ &\quad + 2E[\bar f(x) - y] \underbrace{E[y - y_\mathcal D]}_0 \\ &= E[(f(x) - \bar f(x))^2] + E[(y - y_\mathcal D)^2] + E\{[(\bar f(x) - \bar y) + (\bar y - y)]^2\} \\ &= E[(f(x) - \bar f(x))^2] + E[(y - y_\mathcal D)^2] + E[(\bar f(x) - \bar y)^2] + E[(\bar y - y)^2] + 2E[(\bar f(x) - \bar y)(\bar y - y)] \\ &= E[(f(x) - \bar f(x))^2] + E[(y - y_\mathcal D)^2] + E[(\bar f(x) - \bar y)^2] + E[(\bar y - y)^2] \\ &\quad + 2E[\bar f(x) - \bar y]\underbrace{E[\bar y - y]}_0 \\ &= \underbrace{E[(f(x) - \bar f(x))^2]}_{variance} + \underbrace{E[(\bar f(x) - \bar y)^2]}_{bias^2} + \underbrace{E[(y - y_\mathcal D)^2]}_{noise} + \underbrace{E[(\bar y - y)^2]}_{scatter} \\ \end{aligned} \] 5 ways to achieve right balance of Bias and Variance in ML model | by Niwratti Kasture | Analytics Vidhya | Medium

Previous
Next