Bullet Points

Bullet Points

This post lists out various topics under the machine learning subject.

Data

  • data modalities
    • numbers
    • texts
    • images
    • videos
    • audios
  • data cleaning
  • imbalanced data
  • data normalization (one pitfall)
    • standardization
  • data augmentation
  • data splitting
  • feature extraction/engineering
    • domain expertise
    • mathematical methods
      • PCA
      • kernel methods
    • neural network self-adaptation

Model

  • supervised vs. unsupervised
  • discriminative vs. generative
  • linear vs. non-linear (depending on whether the decision boundary is a hyperplane)
  • parametric vs. non-parametric (depending on whether the data is characterized 1) by a distribution 2) with a finite number of parameters)
  • ensemble method
    • bootstrap aggregating
      • random forest
    • gradient boosting
      • least square boosting
      • AdaBoost
      • LogitBoost
  • regularization and overfitting

Evaluation

Next