Convex Optimization
Definitions
Definitions
Convex Set
A set \(\mathcal X\) is called a convex set if \(x^{(1)}, x^{(2)} \in \mathcal X\), then \(\forall \alpha \in [0,1], \alpha x^{(1)} + (1 - \alpha)x^{(2)} \in \mathcal X\).
Convex Function
A function \(f: \R^N \mapsto \R\) is convex if \(dom(f)\) is a convex set and \[ f(\alpha x^{(1)} + (1 - \alpha)x^{(2)}) \le \alpha f(x^{(1)}) + (1 - \alpha)f(x^{(2)}), \forall x^{(1)}, x^{(2)} \in dom(f), \alpha \in [0,1] \] \(f\) is concave if \(-f\) is convex.
Differentiable function \(f\) with a convex domain is convex if and only if \[ f(y) \ge f(x) + \nabla^T f(x)(y - x), \forall x, y \in dom(f) \] \(f\) is twice differentiable if \(\nabla^2f(x)_{ij} = \frac{\partial^2f(x)}{\partial x_ix_j}\) exists at each \(x \in dom(f)\). \(f\) is convex if and only if
\[ \nabla^2f(x) \succeq 0 \]
Theorem: Any local minima of a convex function \(f: \R^N \mapsto \R\) is also a global minima.
Proof: Suppose \(y\) is a local minima. Then there exists a number \(r > 0\) such that \(\forall x \in dom(f) \land ||x-y||_2 \le r \Rightarrow f(x) \ge f(y)\). Suppose instead there exists a global minima \(z\). Then it must hold that
\[ \begin{gather} ||y-z||_2 > r \\ 0 < \frac{r}{||y-z||_2} < 1 \end{gather} \] There exists some \(0 < \epsilon < r\) such that \(0 < \theta = 1 - \frac{r - \epsilon}{||y-z||_2} < 1\). Then the distance from \(y\) to point \((\theta y + (1 - \theta)z)\) is \[ ||y - (\theta y + (1 - \theta)z)||_2 = (1 - \theta)||y-z||_2 = \frac{r - \epsilon}{||y-z||_2}||y-z||_2 < r \] That is to say \[ f(\theta y + (1 - \theta)z) \ge f(y) \] However, since \(f\) is convex and \(0 < \theta < 1\), \[ f(\theta y + (1 - \theta)z) \le \theta f(y) + (1 - \theta)f(z) \] Since \(z\) is the global minima, \[ f(\theta y + (1 - \theta)z) \le \theta f(y) + (1 - \theta)f(z) < \theta f(y) + (1 - \theta)f(y) = f(y) \] which contradicts that \(f(\theta y + (1 - \theta)z) \ge f(y)\) derived. In other words, \(y\) is a global minima.
Properties
Super-additivity
For a convex function \(f\) such that \(f(0) = 0\), it is super-additive in that \[ f(x) + f(y) \le f(x+y) \] To show it, notice that \[ \begin{aligned} & f(x) + f(y) = f(\frac{x}{x+y}(x+y)) + f(\frac{y}{x+y}(x+y)) \\ &= f(\frac{x}{x+y}(x+y) + \frac{y}{x+y} \cdot 0) + f(\frac{y}{x+y}(x+y) + \frac{x}{x+y} \cdot 0) \\ &\le \frac{x}{x+y} f(x+y) + \frac{y}{x+y} f(0) + \frac{y}{x+y} f(x+y) + \frac{x}{x+y}f(0) \\ &= f(x+y) \end{aligned} \]
Standard Form
Standard form of the optimization problem is \[ \begin{aligned} &\min f_0(x) \\ s.t.\quad &f_i(x) \le 0, i = 1,\dots,r \\ &h_i(x) = 0, i = 1,\dots,s \\ \end{aligned} \] Standard form of the convex optimization problem is \[ \begin{aligned} &\min f_0(x) \\ s.t.\quad &f_i(x) \le 0, i = 1,\dots,r \\ &a_i^Tx = b_i (Ax = b), i = 1,\dots,s \\ &\text{$f_0,\dots,f_r$ are convex, and $a_0,\dots,a_s \in \R^N$} \end{aligned} \]
Convex Conjugate
For a convex function \(f\), its convex conjugate \(f^*\) is defined as \[ f^*(t) = \sup_x [x^T \cdot t - f(x)] \] By definition, a Convex Conjugate pair \((f,f^*)\) has the following property: \[ f(x) + f^*(t) \ge x^T \cdot t \] As a conjugate, \(f^{**} = f\): \[ \begin{aligned} f^{**}(t) &= \sup_x [x^T \cdot t - f^*(x)] \\ &= \sup_x [x^T \cdot t - \sup_y [y^T \cdot x - f(y)]] \\ &= \sup_x [x^T \cdot t + \inf_y [f(y) - y^T \cdot x]] \\ &= \sup_x \inf_y [x^T (t-y) + f(y)] \\ &\Downarrow_\text{Mini-max Theorem} \\ &= \inf_y \sup_x [x^T (t-y) + f(y)] \end{aligned} \] The above reaches the infimum only if \(y=t\). Otherwise, \(\sup_x [x^T (t-y) + f(y)]\) can make it to infinity. Therefore, \[ f^{**}(t) = \inf_y \sup_x [f(t)] = f(t) \] Wiki || 凸优化-凸共轭 || MPRA_paper_80502.pdf (uni-muenchen.de)