Singular Value Decomposition

Stephen Boyd and Sanjay Lall

EE263 Stanford University

Geometry of linear maps

every matrix $A \in \mathbb{R}^{m \times n}$ maps the unit ball in \mathbb{R}^n to an ellipsoid in \mathbb{R}^m

$$
S = \left\{ x \in \mathbb{R}^n \mid ||x|| \le 1 \right\} \qquad AS = \left\{ Ax \mid x \in S \right\}
$$

Singular values and singular vectors

- First, assume $A \in \mathbb{R}^{m \times n}$ is skinny and full rank
- ighthronoup the numbers $\sigma_1, \ldots, \sigma_n > 0$ are called the *singular values* of A
- In the vectors u_1, \ldots, u_n are called the *left* or *output singular vectors* of A. These are *unit vectors* along the principal semiaxes of AS
- ighthe vectors v_1, \ldots, v_n are called the right or input singular vectors of A. These map to the principal semiaxes, so that

$$
Av_i = \sigma_i u_i
$$

Thin singular value decomposition

$$
Av_i = \sigma_i u_i \quad \text{for } 1 \leq i \leq n
$$

For $A \in \mathbb{R}^{m \times n}$ with $\mathsf{rank}(A) = n$, let

$$
U = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix} \qquad \Sigma = \begin{bmatrix} \sigma_1 & & & \\ & \sigma_2 & & \\ & & \ddots & \\ & & & \sigma_n \end{bmatrix} \qquad V = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}
$$

the above equation is $AV = U\Sigma$ and since V is orthogonal

 $A = U \Sigma V^{\mathsf{T}}$

called the thin SVD of A

Thin SVD

For $A \in \mathbb{R}^{m \times n}$ with rank $(A) = r$, the thin SVD is

$$
A = U\Sigma V^{\mathsf{T}} = \sum_{i=1}^r \sigma_i u_i v_i^{\mathsf{T}}
$$

here

- \blacktriangleright $U \in \mathbb{R}^{m \times r}$ has orthonormal columns,
- $\blacktriangleright \ \Sigma = \mathsf{diag}(\sigma_1, \ldots, \sigma_r)$, where $\sigma_1 > \cdots > \sigma_r > 0$
- \blacktriangleright $V \in \mathbb{R}^{n \times r}$ has orthonormal columns

SVD and eigenvectors

$$
A^{\mathsf{T}} A = (U \Sigma V^{\mathsf{T}})^{\mathsf{T}} (U \Sigma V^{\mathsf{T}}) = V \Sigma^2 V^{\mathsf{T}}
$$

hence:

 \blacktriangleright v_i are eigenvectors of A^TA (corresponding to nonzero eigenvalues)

$$
\blacktriangleright \ \sigma_i = \sqrt{\lambda_i(A^\top A)} \ (\text{and}\ \lambda_i(A^\top A) = 0 \ \text{for} \ i > r)
$$

 \blacktriangleright $||A|| = \sigma_1$

SVD and eigenvectors

similarly,

$$
AA^{\mathsf{T}} = (U\Sigma V^{\mathsf{T}})(U\Sigma V^{\mathsf{T}})^{\mathsf{T}} = U\Sigma^2 U^{\mathsf{T}}
$$

hence:

 \blacktriangleright u_i are eigenvectors of AA^T (corresponding to nonzero eigenvalues)

$$
\blacktriangleright \ \sigma_i = \sqrt{\lambda_i(AA^{\mathsf{T}})} \ (\text{and} \ \lambda_i(AA^{\mathsf{T}}) = 0 \ \text{for} \ i > r)
$$

SVD and range

 $A = U \Sigma V^{\mathsf{T}}$

- $u_1, \ldots u_r$ are orthonormal basis for range(A)
- \blacktriangleright $v_1, \ldots v_r$ are orthonormal basis for $\mathsf{null}(A)^\perp$

Interpretations

linear mapping $y = Ax$ can be decomposed as

- **D** compute coefficients of x along input directions v_1, \ldots, v_r
- scale coefficients by σ_i
- reconstitute along output directions u_1, \ldots, u_r

difference with eigenvalue decomposition for symmetric A : input and output directions are *different*

- \triangleright v_1 is most sensitive (highest gain) input direction
- \blacktriangleright u_1 is highest gain output direction
- $Av_1 = \sigma_1u_1$

Gain

SVD gives clearer picture of gain as function of input/output directions example: consider $A \in \mathbb{R}^{4 \times 4}$ with $\Sigma = \mathsf{diag}(10, \ 7, \ 0.1, \ 0.05)$

- input components along directions v_1 and v_2 are amplified (by about 10) and come out mostly along plane spanned by u_1 , u_2
- input components along directions v_3 and v_4 are attenuated (by about 10)
- \blacktriangleright $||Ax||/||x||$ can range between 10 and 0.05
- \blacktriangleright A is nonsingular
- \triangleright for some applications you might say A is effectively rank 2

Example: SVD and control

we want to choose x so that $Ax = y_{des}$.

- ight singular vector v_i is mapped to left singular vector u_i , amplified by σ_i
- \blacktriangleright σ_i measures the *actuator authority* in the direction $u_i \in \mathbb{R}^m$
- \triangleright $r < m \implies$ no control authority in directions u_{r+1}, \ldots, u_m
- \triangleright if A is fat and full rank, then the ellipsoid is

$$
E = \left\{ \ y \in \mathbb{R}^m \ | \ y^{\mathsf{T}} \big(A A^{\mathsf{T}} \big)^{-1} y \leq 1 \right\}
$$

because

$$
AA^{\mathsf{T}} = U\Sigma V^{\mathsf{T}} V \Sigma U^{\mathsf{T}} = U\Sigma^2 U^{\mathsf{T}}
$$

Example: Forces applied to a rigid body

apply forces via thrusters x_i in specific directions

- ightharpoontriangleright total force on body $y = Ax$,
- \triangleright x_i is power (in W) supplied to thruster i
- \blacktriangleright $||a_i||$ is *efficiency* of thruster
- \triangleright most efficient direction we can apply thrust is given by long axis
- $\sigma_1 = 1.4668$, $\sigma_2 = 0.5904$

General pseudo-inverse

if $A\neq 0$ has SVD $A=U\Sigma V^{\sf T}$, the *pseudo-inverse* or *Moore-Penrose inverse* of A is

$$
A^{\dagger} = V \Sigma^{-1} U^{\mathsf{T}}
$$

 \blacktriangleright if A is skinny and full rank,

$$
A^{\dagger} = (A^{\mathsf{T}} A)^{-1} A^{\mathsf{T}}
$$

gives the least-squares approximate solution $x_{\text{\tiny ls}}=A^{\dag}y$

 \blacktriangleright if A is fat and full rank,

$$
A^\dagger = A^\mathsf{T} (A A^\mathsf{T})^{-1}
$$

gives the least-norm solution $x_{\rm ln} = A^\dagger y$

$$
X_{1s} = \{ z \mid ||Az - y|| = \min_{w} ||Aw - y|| \}
$$

is set of least-squares approximate solutions

 $x_{\rm pinv}=A^{\dag}y\in X_{\rm ls}$ has minimum norm on $X_{\rm ls},~i.e.,~x_{\rm pinv}$ is the minimum-norm, least-squares approximate solution

Pseudo-inverse via regularization

for $\mu > 0$, let x_{μ} be (unique) minimizer of

$$
||Ax - y||^2 + \mu ||x||^2
$$

i.e.,

$$
\pmb{x}_\mu = \left(A^{\mathsf{T}} A + \mu I\right)^{-1} A^{\mathsf{T}} \pmb{y}
$$

here, $A^{\mathsf{T}} A + \mu I > 0$ and so is invertible then we have $\displaystyle\lim_{\mu\to 0}x_\mu=A^{\dag}y$ in fact, we have $\lim\limits_{\mu\rightarrow 0}\left(A^{\mathsf{T}}A+\mu I\right)^{-1}A^{\mathsf{T}}=A^{\mathsf{T}}$ (check this!)

Full SVD

SVD of $A \in \mathbb{R}^{m \times n}$ with $\mathsf{rank}(A) = r$

$$
A = U_1 \Sigma_1 V_1^{\mathsf{T}} = \begin{bmatrix} u_1 & \cdots & u_r \end{bmatrix} \begin{bmatrix} \sigma_1 & & & \\ & \ddots & & \\ & & \sigma_r \end{bmatrix} \begin{bmatrix} v_1^{\mathsf{T}} \\ \vdots \\ v_r^{\mathsf{T}} \end{bmatrix}
$$

Add extra columns to U and V, and add zero rows/cols to Σ_1

17

Full SVD

- \blacktriangleright find $U_2\in \mathbb{R}^{m\times (m-r)}$ such that $U=\left[\begin{array}{cc} U_1 & U_2 \end{array}\right]\in \mathbb{R}^{m\times m}$ is orthogonal
- \blacktriangleright find $V_2 \in \mathbb{R}^{n \times (n-r)}$ such that $V = \begin{bmatrix} V_1 & V_2 \end{bmatrix} \in \mathbb{R}^{n \times n}$ is orthogonal

ightharpoonup and zero rows/cols to Σ_1 to form $\Sigma \in \mathbb{R}^{m \times n}$

$$
\Sigma = \left[\begin{array}{c|c} \Sigma_1 & 0_{r \times (n-r)} \\ \hline 0_{(m-r) \times r} & 0_{(m-r) \times (n-r)} \end{array} \right]
$$

then the full SVD is

$$
A = U_1 \Sigma_1 V_1^{\mathsf{T}} = \left[U_1 \mid U_2 \right] \left[\begin{array}{c|c} \Sigma_1 & 0_{r \times (n-r)} \\ \hline 0(m-r) \times r & 0(m-r) \times (n-r) \end{array} \right] \left[\begin{array}{c} V_1^{\mathsf{T}} \\ V_2^{\mathsf{T}} \end{array} \right]
$$

which is $A = U\Sigma V^{\top}$

example: SVD

$$
A = \left[\begin{array}{rrr} 1 & 2 \\ 3 & 1 \\ 4 & 2 \end{array}\right]
$$

SVD is

$$
A = \begin{bmatrix} -0.319 & 0.915 & -0.248 \\ -0.542 & -0.391 & -0.744 \\ -0.778 & -0.103 & 0.620 \end{bmatrix} \begin{bmatrix} 5.747 & 0 \\ 0 & 1.403 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} -0.880 & -0.476 \\ -0.476 & 0.880 \end{bmatrix}
$$

19

Image of unit ball under linear transformation

full SVD:

$$
A = U \Sigma V^{\mathsf{T}}
$$

gives intepretation of $y = Ax$:

- rotate (by V^{\top})
- ightharpoontriangleright stretch along axes by σ_i ($\sigma_i = 0$ for $i > r$)
- riangleright zero-pad (if $m > n$) or truncate (if $m < n$) to get m-vector

rotate (by U)

Image of unit ball under A

 ${Ax \mid ||x|| \le 1}$ is ellipsoid with principal axes $\sigma_i u_i$.

Sensitivity of linear equations to data error

```
consider y = Ax, A \in \mathbb{R}^{n \times n} invertible; of course x = A^{-1}ysuppose we have an error or noise in y, i.e., y becomes y + \delta ythen x becomes x+\delta x with \delta x=A^{-1}\delta yhence we have \|\delta x\| = \|A^{-1}\delta y\| \le \|A^{-1}\| \|\delta y\|
```
if $\|A^{-1}\|$ is large,

- \triangleright small errors in y can lead to large errors in x
- ightharpoonup can't solve for x given y (with small errors)
- \triangleright hence, A can be considered singular in practice

Relative error analysis

a more refined analysis uses *relative* instead of *absolute* errors in x and y since $y = Ax$, we also have $||y|| \le ||A||||x||$, hence

$$
\frac{||\delta x||}{||x||} \le ||A|| ||A^{-1}|| \frac{||\delta y||}{||y||}
$$

So we define the condition number of A:

$$
\kappa(A)=\|A\|\|A^{-1}\|=\sigma_{\mathsf{max}}(A)/\sigma_{\mathsf{min}}(A)
$$

Relative error analysis

we have:

```
relative error in solution x < condition number arelative error in data y
```
or, in terms of $#$ bits of guaranteed accuracy:

```
# bits accuracy in solution \approx # bits accuracy in data -\log_2 \kappa
```
we say

- \triangleright A is well conditioned if κ is small
- A is poorly conditioned if κ is large

(definition of 'small' and 'large' depend on application)

same analysis holds for least-squares approximate solutions with A nonsquare, $\kappa = \sigma_{\text{max}}(A)/\sigma_{\text{min}}(A)$

Low rank approximations

suppose
$$
A \in \mathbb{R}^{m \times n}
$$
, rank $(A) = r$, with SVD $A = U\Sigma V^{T} = \sum_{i=1}^{r} \sigma_{i}u_{i}v_{i}^{T}$

we seek matrix \hat{A} , rank $(\hat{A}) \le p < r$, s.t. $\hat{A} \approx A$ in the sense that $||A - \hat{A}||$ is minimized solution: optimal rank p approximator is

$$
\hat{A} = \sum_{i=1}^p \sigma_i u_i v_i^{\mathsf{T}}
$$

$$
\triangleright \text{ hence } ||A - \hat{A}|| = \left\| \sum_{i=p+1}^{r} \sigma_i u_i v_i^{\mathsf{T}} \right\| = \sigma_{p+1}
$$

interpretation: SVD dyads $u_i v_i^T$ are ranked in order of 'importance'; take p to get rank p approximant

Proof: Low rank approximations

suppose $rank(B) < p$ then dim null(B) > $n - p$ also, **dim span** $\{v_1, \ldots, v_{p+1}\} = p + 1$

hence, the two subspaces intersect, $\it{i.e.}$, there is a unit vector $\it{z} \in \mathbb{R}^n$ s.t.

$$
Bz=0, \qquad z\in \mathsf{span}\{v_1,\ldots,v_{p+1}\}
$$

$$
(A - B)z = Az = \sum_{i=1}^{p+1} \sigma_i u_i v_i^{\mathsf{T}} z
$$

$$
||(A - B)z||^2 = \sum_{i=1}^{p+1} \sigma_i^2 (v_i^\top z)^2 \geq \sigma_{p+1}^2 ||z||^2
$$

hence $||A - B|| > \sigma_{n+1} = ||A - \hat{A}||$

another interpretation of σ_i :

$$
\sigma_i = \min\{\||A - B|| \mid \text{rank}(B) \leq i - 1\ \}
$$

i.e., the distance (measured by matrix norm) to the nearest rank $i - 1$ matrix for example, if $A \in \mathbb{R}^{n \times n}$, $\sigma_n = \sigma_{\textsf{min}}$ is distance to nearest singular matrix hence, small σ_{\min} means A is near to a singular matrix

Application: model simplification

suppose $y = Ax + v$, where

 \blacktriangleright $A \in \mathbb{R}^{100 \times 30}$ has singular values

10; 7; 2; 0:5; 0:01; : : : ; 0:0001

- \blacktriangleright $||x||$ is on the order of 1
- ightharpoon in the view or noise v has norm on the order of 0.1

then the terms $\sigma_i u_i v_i^\mathsf{T} x$, for $i = 5, \ldots, 30$, are substantially smaller than the noise term v simplified model:

$$
y = \sum_{i=1}^4 \sigma_i u_i v_i^\top x + v
$$

Example: Low rank approximation

Example: Low rank approximation

here $\|A - A_{\mathsf{approx}}\| \leq \sigma_3 \approx 0.02$