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Singular values and singular vectors
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» first, assume A € R™*™ is skinny and full rank
» the numbers o1,...,0, > 0 are called the singular values of A

» the vectors u1,...,un are called the left or output singular vectors of A. These are unit vectors along
the principal semiaxes of AS

» the vectors v1,..., v, are called the right or input singular vectors of A.
These map to the principal semiaxes, so that

Av; = o;u;



Thin singular value decomposition

Av; = o;u; fori1<i<n

For A € R™*™ with rank(4) = n, let

o1
02

U:[ul Uy - - un] 3= - V:['u1 Uy v

o
the above equation is AV = UX and since V is orthogonal
A=UzVT

called the thin SVD of A
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Thin SVD

For A € R™*™ with rank(A4) = r, the thin SVD is

A=UZV" = Zaiuivj

i=1

here

» U € R™*" has orthonormal columns,

» = =diag(o1,...,0,), where oy > --- >0, >0

» V € R™" has orthonormal columns



SVD and eigenvectors

ATA=wzvHhT(wusv’) =vz*v’
hence:

> v; are eigenvectors of AT A (corresponding to nonzero eigenvalues)

> 0i=+/A(ATA) (and N\;(ATA) =0 for i > 1)
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SVD and eigenvectors

similarly,
AAT = (Usv(UsvhT =UustUT

hence:

> u; are eigenvectors of AA" (corresponding to nonzero eigenvalues)

> 0: =/ A(AAT) (and X\;(AAT) =0 for i > 7)



SVD and range

A=UxnvV"T

» ui,...u, are orthonormal basis for range(A)

» v1,...vn are orthonormal basis for null(4)*



Interpretations

A=UZV" = Zaiuivj

1=1

T Viz

oV Az

linear mapping y = Az can be decomposed as

» compute coefficients of z along input directions vy, ...

» scale coefficients by o;

» reconstitute along output directions uy, ..., u,

» U EEE—
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difference with eigenvalue decomposition for symmetric A: input and output directions are different



Gain

» vi is most sensitive (highest gain) input direction
» ui is highest gain output direction

» Avi = o1u1
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Gain

SVD gives clearer picture of gain as function of input/output directions

example: consider A € R*** with & = diag(10, 7, 0.1, 0.05)

» input components along directions v and va are amplified (by about 10) and come out mostly along
plane spanned by u1, us2

» input components along directions vz and v4 are attenuated (by about 10)
» ||Az||/||z]| can range between 10 and 0.05
» A is nonsingular

» for some applications you might say A is effectively rank 2
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Example: SVD and control

we want to choose z so that Az = ydes.

U1

U2

» right singular vector v; is mapped to left singular vector u;, amplified by o;
» o; measures the actuator authority in the direction u; € R™
» r<m == no control authority in directions ur41,...,uUm
» if Ais fat and full rank, then the ellipsoid is
E = {yERm | yT(AAT)_ly < 1}

because
AAT =UzvvsUT = Uus?UT
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Example: Forces applied to a rigid body
apply forces via thrusters z; in specific directions

1

-2
-2 -1 0 1 2

» total force on body y = Az,

» z; is power (in W) supplied to thruster 7

» ||as|| is efficiency of thruster

» most efficient direction we can apply thrust is given by long axis

» o1 = 1.4668, 0, = 0.56904

13



General pseudo-inverse

if A#0has SVD A =UZVT, the pseudo-inverse or Moore-Penrose inverse of A is

At =vzyT

» if A is skinny and full rank,
Al =(ATA)tAT

gives the least-squares approximate solution z; = Afy

» if A is fat and full rank,
Al =ATA4T)™

gives the least-norm solution z1, = A'y
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General pseudo-inverse

Xis ={ z|[[Az —yl| = min [|[Aw —y|| }

is set of least-squares approximate solutions

Tpiny = ATy € Xis has minimum norm on Xis, i.e., Zpiny is the minimum-norm, least-squares approximate
solution
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Pseudo-inverse via regularization

for u > 0, let z, be (unique) minimizer of
|4z — y||* + plj]|”

i.€.,

z, = (ATA + p.[)_l ATy
here, ATA+ uI > 0 and so is invertible
then we have lim z, = A’y
p—0
in fact, we have lim (ATA + ;J.I)_l AT = AT
pn—0

(check this!)
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Full SVD

SVD of A € R™*™ with rank(4) =r

a1

A=U V) = [ul ur]

Add extra columns to U and V, and add zero rows/cols to 2;

or ol

_______

___________
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Full SVD

» find Us € R™*0™ ") sych that U = [Ul Ug] € R™*™ is orthogonal
> find Va € R™*(™™ such that V = [Vl Vs ] € R™ ™ is orthogonal

» add zero rows/cols to &; to form & € R™*™

then the full SVD is

g ‘ 0r><(nf'r)

A=UsiV] =[ U | Uy [
' [ ‘ ] O(m—r)xr ‘ O(m—r)x(n—‘r)

which is A=UZVT

‘/IT
‘/'21—
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example:

SVD is

SvD

—0.319 0.915 —0.248
A= —-0542 —0.391 —0.744
—0.778 —0.103  0.620

B W =

N =N

—0.880
—0.476

—0.476
0.880
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Image of unit ball under linear transformation

full SVD:
A=UxvV"T

gives intepretation of y = Az:
» rotate (by V)
» stretch along axes by o; (o; = 0 for ¢ > r)

» zero-pad (if m > n) or truncate (if m < n) to get m-vector

» rotate (by U)
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Image of unit ball under A

1 rotate by VT E 1

stretch, ¥ = diag(2,0.5)
U2 Zi ] rotate by U 05
i )

{Az | ||z|| < 1} is ellipsoid with principal axes o;u;.




Sensitivity of linear equations to data error

consider y = Az, A € R™ ™ invertible; of course ¢ = A1y
suppose we have an error or noise in y, i.e., y becomes y + y
then z becomes z + dz with dz = A~ 16y

hence we have [[3a]| = [|A~"6y|| < [[A~[|||6y]|

if [|A7Y| is large,
» small errors in y can lead to large errors in z

» can't solve for z given y (with small errors)

» hence, A can be considered singular in practice
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Relative error analysis

a more refined analysis uses relative instead of absolute errors in  and y
since y = Az, we also have ||y|| < ||A4]|||z||, hence

18yl
llyll

- |:' < laya-tlevl

So we define the condition number of A:
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Relative error analysis

we have:

relative error in solution z < condition number - relative error in data y

or, in terms of # bits of guaranteed accuracy:
# bits accuracy in solution & # bits accuracy in data —log, K
we say

» A is well conditioned if k is small
» A is poorly conditioned if  is large
(definition of ‘small’ and ‘large’ depend on application)
same analysis holds for least-squares approximate solutions with A nonsquare, K = Omax(4)/Omin(A)
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Low rank approximations

suppose A € R™ ™, rank(A) = r, with SVD A =UZV' = Z oiuvy

i=1
we seek matrix A, rank(A) < p < r, s.t. A~ A in the sense that ||A — A|| is minimized

solution: optimal rank p approximator is

p

% T

A= E oiUY;
i=1

» hence ||A— A = HZ:=P+1 oiuv;

= Op+1

b interpretation: SVD dyads u;v, are ranked in order of ‘importance’; take p to get rank p approximant
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Proof: Low rank approximations

suppose rank(B) < p

then dimnull(B) > n —p

also, dimspan{vs,...,vp41} =p+1

hence, the two subspaces intersect, i.e., there is a unit vector z € R™ s.t.
Bz =0, z € span{vi,...,Upt1}

pt1
(A-B)z=Az = Z cr.iu-;v;rz

=1

p+1
2 2, T_\2 2 2
I(A=B)z|* = 0?(v]2)’ > o l2ll
=1

hence [|4 — Bl > ops1 = [|A - 4]
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Distance to singularity

another interpretation of o;:

o; =min{ ||[A— BJ| | rank(B) <:—-1}

i.e., the distance (measured by matrix norm) to the nearest rank 2 — 1 matrix
for example, if A € R™ "™, 0, = Omin is distance to nearest singular matrix

hence, small omin means A is near to a singular matrix
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Application: model simplification

suppose y = Az + v, where
b A € R'9%30 has singular values
10, 7, 2, 0.5, 0.01, ...,0.0001
» ||z|| is on the order of 1
» unknown error or noise v has norm on the order of 0.1

then the terms aiuiviT:c, for 2 =5,...,30, are substantially smaller than the noise term v

simplified model:

4
T
Yy = E oiUU; T+ U
=1
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Example: Low rank approximation

11.08 6.82 1.76 —6.82
2.50 —1.01 —2.60 1.19 1

—4.88 —5.07 -3.21 5.20

—0.49 1.52 2.07 -—-1.66

A=1 _1404 —1240 —6.66 12.65
0.27 —8.51 —10.19 9.15
9.53 —9.84 —17.00 11.00
| —12.01 3.64 11.10 —4.48 |
—0.25 0.45 0.62 0.33 0.46 0.06 —0.19 0.01 36.83 0 0 0
0.07 0.11 0.28 -—0.78 -0.10 0.33 -0.42 0.05 0 26.24 0 0
0.21 0.19 0.49 0.11 0.47 0.61 0.24 0.01 0 0 0.02 0 0.04 0.54 0.61 0.58
~ —0.08 —0.02 0.20 0.06 —0.27 0.30 0.20 —0.86 0 0 0 0.01 0.92 0.17 —-0.33 —0.14
050 —0.55 0.14 —0.02 0.61 0.02 -0.08 -0.20 0 0 0 0 —0.14 -0.49 -0.31 -0.80
0.44 0.03 0.05 0.50 0.30 0.55 0.36 0.18 0 0 0 0 { 0.36 0.66 0.65 0.09
0.59 0.43 0.21 —-0.14 —-0.03 -0.00 0.62 0.13 0 0 0 0
—0.30 -0.51 0.43 0.02 -0.14 0.34 0.41 0.40 0 0 0 0
[ —0.25 0.45 7
0.07 0.11
021 —0.19
A | —0.08 —0.02 36.83 0 —0.04 —-0.54 —0.61 0.58
approx 050 —0.55 0 26.24 0.92 0.17 —0.33 —0.14
0.44 0.03
0.59 0.43
| —0.30 —0.51 |




Example: Low rank approximation

here HA - Aapprox“ < o3~ 0.02

Aapprox =

11.08
2.50
—4.88
—0.49
—14.04
0.27
9.563
—12.01

11.08
2.50
—4.88
—0.49
—14.04
0.27
9.53

L —12.01

6.82
—1.01
—5.07

1.52

—12.40
—8.51
—9.84

3.64

6.83
—1.00
—5.07

1.52

—12.40
—8.51
—9.84

3.64

1.76
—2.60
—3.21

2.07
—6.66

—10.19
—17.00
11.10

1.77
—2.60
-3.21

2.07
—6.66

—10.19
—17.00
11.10

—6.82
1.19
5.20
—1.66
12.65
9.15
11.00

—4.48

—6.81
1.19
5.21
—1.66
12.65
9.15
11.00

—4.47
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