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Geometry of linear maps

v1
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every matrix A 2 Rm�n maps the unit ball in Rn to an ellipsoid in Rm

S =
n
x 2 Rn

�� kxk � 1
o

AS =
n
Ax

�� x 2 S
o
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Singular values and singular vectors
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I first, assume A 2 Rm�n is skinny and full rank

I the numbers �1; : : : ; �n > 0 are called the singular values of A

I the vectors u1; : : : ; un are called the left or output singular vectors of A. These are unit vectors along
the principal semiaxes of AS

I the vectors v1; : : : ; vn are called the right or input singular vectors of A.
These map to the principal semiaxes, so that

Avi = �iui
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Thin singular value decomposition

Avi = �iui for 1 � i � n

For A 2 Rm�n with rank(A) = n, let

U =
�
u1 u2 � � � un

�
� =

2
664
�1

�2 . . .
�n

3
775 V =

�
v1 v2 � � � vn

�

the above equation is AV = U� and since V is orthogonal

A = U�V T

called the thin SVD of A
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Thin SVD

For A 2 Rm�n with rank(A) = r, the thin SVD is

A = U�V T =

rX
i=1

�iuiv
T
i

A U � V T

=

here

I U 2 Rm�r has orthonormal columns,

I � = diag(�1; : : : ; �r), where �1 � � � � � �r > 0

I V 2 Rn�r has orthonormal columns
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SVD and eigenvectors

ATA = (U�V T)T(U�V T) = V �2V T

hence:

I vi are eigenvectors of ATA (corresponding to nonzero eigenvalues)

I �i =
p
�i(ATA) (and �i(ATA) = 0 for i > r)

I kAk = �1
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SVD and eigenvectors

similarly,
AAT = (U�V T)(U�V T)T = U�2UT

hence:

I ui are eigenvectors of AAT (corresponding to nonzero eigenvalues)

I �i =
p
�i(AAT) (and �i(AAT) = 0 for i > r)
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SVD and range

A = U�V T

I u1; : : : ur are orthonormal basis for range(A)

I v1; : : : vr are orthonormal basis for null(A)?
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Interpretations

A = U�V T =

rX
i=1

�iuiv
T
i

V T � U
V Tx �V Tx Axx

linear mapping y = Ax can be decomposed as

I compute coefficients of x along input directions v1; : : : ; vr

I scale coefficients by �i

I reconstitute along output directions u1; : : : ; ur

difference with eigenvalue decomposition for symmetric A: input and output directions are different
9



Gain

I v1 is most sensitive (highest gain) input direction

I u1 is highest gain output direction

I Av1 = �1u1
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Gain

SVD gives clearer picture of gain as function of input/output directions

example: consider A 2 R4�4 with � = diag(10; 7; 0:1; 0:05)

I input components along directions v1 and v2 are amplified (by about 10) and come out mostly along
plane spanned by u1, u2

I input components along directions v3 and v4 are attenuated (by about 10)

I kAxk=kxk can range between 10 and 0:05

I A is nonsingular

I for some applications you might say A is effectively rank 2
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Example: SVD and control

we want to choose x so that Ax = ydes.

v1

v2
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!

I right singular vector vi is mapped to left singular vector ui, amplified by �i

I �i measures the actuator authority in the direction ui 2 Rm

I r < m =) no control authority in directions ur+1; : : : ; um

I if A is fat and full rank, then the ellipsoid is

E =
n
y 2 Rm j yT

�
AAT

��1
y � 1

o

because
AAT = U�V TV �UT = U�2UT
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Example: Forces applied to a rigid body

apply forces via thrusters xi in specific directions

a3

a2

a1

û1u1
û2u2

A =
�
a1 a2 a3

�
=

�
�1 0 �1

0 0:5 �0:5

�

I total force on body y = Ax,

I xi is power (in W) supplied to thruster i

I kaik is efficiency of thruster

I most efficient direction we can apply thrust is given by long axis

I �1 = 1:4668, �2 = 0:5904
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General pseudo-inverse

if A 6= 0 has SVD A = U�V T, the pseudo-inverse or Moore-Penrose inverse of A is

Ay = V ��1UT

I if A is skinny and full rank,
Ay = (ATA)�1AT

gives the least-squares approximate solution xls = Ayy

I if A is fat and full rank,
Ay = AT(AAT)�1

gives the least-norm solution xln = Ayy
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General pseudo-inverse

Xls = f z j kAz � yk = min
w

kAw � yk g

is set of least-squares approximate solutions

xpinv = Ayy 2 Xls has minimum norm on Xls, i.e., xpinv is the minimum-norm, least-squares approximate
solution
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Pseudo-inverse via regularization

for � > 0, let x� be (unique) minimizer of

kAx� yk2 + �kxk2

i.e.,
x� =

�
ATA+ �I

��1
ATy

here, ATA+ �I > 0 and so is invertible

then we have lim
�!0

x� = Ayy

in fact, we have lim
�!0

�
ATA+ �I

��1
AT = Ay

(check this!)
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Full SVD

SVD of A 2 Rm�n with rank(A) = r

A = U1�1V
T
1 =

�
u1 � � � ur

�
2
64
�1

. . .
�r

3
75
2
64
vT1
...
vTr

3
75

Add extra columns to U and V , and add zero rows/cols to �1

A U � V T

=
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Full SVD

I find U2 2 R
m�(m�r) such that U =

�
U1 U2

�
2 Rm�m is orthogonal

I find V2 2 Rn�(n�r) such that V =
�
V1 V2

�
2 Rn�n is orthogonal

I add zero rows/cols to �1 to form � 2 Rm�n

� =

�
�1 0r�(n� r)

0(m� r)�r 0(m� r)�(n� r)

�

then the full SVD is

A = U1�1V
T
1 =

�
U1 U2

� � �1 0r�(n� r)

0(m� r)�r 0(m� r)�(n� r)

��
V T
1

V T
2

�

which is A = U�V T
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example: SVD

A =

2
4 1 2

3 1

4 2

3
5

SVD is

A =

2
4 �0:319 0:915 �0:248

�0:542 �0:391 �0:744

�0:778 �0:103 0:620

3
5
2
4 5:747 0

0 1:403

0 0

3
5
�
�0:880 �0:476

�0:476 0:880

�
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Image of unit ball under linear transformation

full SVD:
A = U�V T

gives intepretation of y = Ax:

I rotate (by V T)

I stretch along axes by �i (�i = 0 for i > r)

I zero-pad (if m > n) or truncate (if m < n) to get m-vector

I rotate (by U)
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Image of unit ball under A

rotate by V T

stretch, Σ = diag(2, 0.5)

u1u2 rotate by U

1

1

1

1

2

0.5

fAx j kxk � 1g is ellipsoid with principal axes �iui.
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Sensitivity of linear equations to data error

consider y = Ax, A 2 Rn�n invertible; of course x = A�1y

suppose we have an error or noise in y, i.e., y becomes y + �y

then x becomes x+ �x with �x = A�1�y

hence we have k�xk = kA�1�yk � kA�1kk�yk

if kA�1k is large,

I small errors in y can lead to large errors in x

I can’t solve for x given y (with small errors)

I hence, A can be considered singular in practice
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Relative error analysis

a more refined analysis uses relative instead of absolute errors in x and y

since y = Ax, we also have kyk � kAkkxk, hence

k�xk

kxk
� kAkkA�1k

k�yk

kyk

So we define the condition number of A:

�(A) = kAkkA�1k = �max(A)=�min(A)
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Relative error analysis

we have:

relative error in solution x � condition number � relative error in data y

or, in terms of # bits of guaranteed accuracy:

# bits accuracy in solution � # bits accuracy in data � log2 �

we say

I A is well conditioned if � is small

I A is poorly conditioned if � is large

(definition of ‘small’ and ‘large’ depend on application)

same analysis holds for least-squares approximate solutions with A nonsquare, � = �max(A)=�min(A)
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Low rank approximations

suppose A 2 Rm�n, rank(A) = r, with SVD A = U�V T =

rX
i=1

�iuiv
T
i

we seek matrix Â, rank(Â) � p < r, s.t. Â � A in the sense that kA� Âk is minimized

solution: optimal rank p approximator is

Â =

pX
i=1

�iuiv
T
i

I hence kA� Âk =



Pr

i=p+1
�iuiv

T
i




 = �p+1

I interpretation: SVD dyads uivTi are ranked in order of ‘importance’; take p to get rank p approximant
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Proof: Low rank approximations

suppose rank(B) � p

then dimnull(B) � n� p

also, dim spanfv1; : : : ; vp+1g = p+ 1

hence, the two subspaces intersect, i.e., there is a unit vector z 2 Rn s.t.

Bz = 0; z 2 spanfv1; : : : ; vp+1g

(A�B)z = Az =

p+1X
i=1

�iuiv
T
i z

k(A�B)zk2 =

p+1X
i=1

�2i (v
T
i z)

2 � �2p+1kzk
2

hence kA�Bk � �p+1 = kA� Âk
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Distance to singularity

another interpretation of �i:

�i = minf kA�Bk j rank(B) � i� 1 g

i.e., the distance (measured by matrix norm) to the nearest rank i� 1 matrix

for example, if A 2 Rn�n, �n = �min is distance to nearest singular matrix

hence, small �min means A is near to a singular matrix
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Application: model simplification

suppose y = Ax+ v, where

I A 2 R100�30 has singular values

10; 7; 2; 0:5; 0:01; : : : ; 0:0001

I kxk is on the order of 1

I unknown error or noise v has norm on the order of 0:1

then the terms �iuivTi x, for i = 5; : : : ; 30, are substantially smaller than the noise term v

simplified model:

y =

4X
i=1

�iuiv
T
i x+ v
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Example: Low rank approximation

A =

2
66666664

11:08 6:82 1:76 �6:82
2:50 �1:01 �2:60 1:19

�4:88 �5:07 �3:21 5:20
�0:49 1:52 2:07 �1:66
�14:04 �12:40 �6:66 12:65

0:27 �8:51 �10:19 9:15
9:53 �9:84 �17:00 11:00

�12:01 3:64 11:10 �4:48

3
77777775

�

2
66666664

�0:25 0:45 0:62 0:33 0:46 0:05 �0:19 0:01
0:07 0:11 0:28 �0:78 �0:10 0:33 �0:42 0:05
0:21 �0:19 0:49 0:11 �0:47 �0:61 �0:24 �0:01

�0:08 �0:02 0:20 0:06 �0:27 0:30 0:20 �0:86
0:50 �0:55 0:14 �0:02 0:61 0:02 �0:08 �0:20
0:44 0:03 �0:05 0:50 �0:30 0:55 �0:36 0:18
0:59 0:43 0:21 �0:14 �0:03 �0:00 0:62 0:13

�0:30 �0:51 0:43 0:02 �0:14 0:34 0:41 0:40

3
77777775

2
66666664

36:83 0 0 0
0 26:24 0 0
0 0 0:02 0
0 0 0 0:01
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

3
77777775

2
64
�0:04 �0:54 �0:61 0:58
0:92 0:17 �0:33 �0:14

�0:14 �0:49 �0:31 �0:80
�0:36 0:66 �0:65 �0:09

3
75

Aapprox �

2
66666664

�0:25 0:45
0:07 0:11
0:21 �0:19

�0:08 �0:02
0:50 �0:55
0:44 0:03
0:59 0:43

�0:30 �0:51

3
77777775

�
36:83 0

0 26:24

��
�0:04 �0:54 �0:61 0:58
0:92 0:17 �0:33 �0:14

�
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Example: Low rank approximation

A =

2
66666664

11:08 6:82 1:76 �6:82
2:50 �1:01 �2:60 1:19

�4:88 �5:07 �3:21 5:20
�0:49 1:52 2:07 �1:66
�14:04 �12:40 �6:66 12:65

0:27 �8:51 �10:19 9:15
9:53 �9:84 �17:00 11:00

�12:01 3:64 11:10 �4:48

3
77777775

Aapprox =

2
66666664

11:08 6:83 1:77 �6:81
2:50 �1:00 �2:60 1:19

�4:88 �5:07 �3:21 5:21
�0:49 1:52 2:07 �1:66
�14:04 �12:40 �6:66 12:65

0:27 �8:51 �10:19 9:15
9:53 �9:84 �17:00 11:00

�12:01 3:64 11:10 �4:47

3
77777775

here kA� Aapproxk � �3 � 0:02
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